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What is the data for visual recognition?

data

training

»

Object-level _, Image classification
labels Task

Pixel-level  ___, gemantic segmentation
labels Task
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Experimental data vs. Real-world data

many samples with labels
per class

Al Model
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Experimental data vs. Real-world data

many samples with labels online data stream, limited labeled data, ...
per class

VS . TV shows

Before:
seen few animals

When growing up:
learn more new animals

Al Model Human
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Data-limited image classification
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Class-Incremental Learning (CIL)

Icansolve  Icansolve
tasks 1&2. tasks 1&2&3.

Learn»mg Learnmg Learmng

- Task 2 Task 3

Icansolve
task 1.

Incremental learning
Also known as: continual learning, lifelong learning, ...
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Class-Incremental Learning (CIL)

Rebuffi et al.[1] demand the following three properties of an algorithm to qualify as

C

lass-incremental:

(1) Different classes arrive in different phases

@ At any time, provide a classifier for the classes observed so far i
(3) The memory is limited i

[1] Rebuffi, Sylvestre-Alvise, et al. "icarl: Incremental classifier and representation learning." CVPR 2017.
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Class-Incremental Learning (CIL)

Phase 1

—[ ozt ]—’

train

A 4

Test for
Data 1
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Class-Incremental Learning (CIL)

P h ase 1 Exemplar 1
Data 1
train

Class1ﬁer

Test for
Data 1
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Class-Incremental Learning (CIL)

Phase 2

CYY Y B

Data 2

_ 00000000 —

Test for
Data 1

Test for

Data 1+2
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Class-Incremental Learning (CIL)

Phase 3 [ Exemplar 142

Data 3

ooooooo

!

Major challenges:
The classifier overfits new data
and forgets the old knowledge

Test for Test for Test for
Data 1 Data 1+2 Data 1+2+3
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Class-Incremental Learning (CIL)

1. Replaying on old class exemplars

Allocating as much memory as possible for the new datall-? 3]
Imbalance between the old and new data
Our proposed solution: use RL to control the memory allocation

2. Using a knowledge distillation loss
Computing the distillation loss on the new datall> %3]
Hampering the learning of new classes
Our proposed solution: leverage external unlabeled data

[1] Rebuffi, Sylvestre-Alvise, et al. "icarl: Incremental classifier and representation learning." CVPR 2017,
[2] Hou, Saihui, et al. "Learning a unified classifier incrementally via rebalancing." CVPR 2019;
[3] Wu, Yue, et al. “Large scale incremental learning.” CVPR 2019.

12
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Class-Incremental Learning (CIL)

How to allocate the memory between new-class data and old-class exemplars?

Existing methods [1,2,3] Our idea
Allocate as much memory as Learn a controller to
possible for the new-class data adjust the memory allocation
XX} memo xXx)
new-class | _ _ o r;_.__ar.?’ new-class | 1 memory
data :...' N | data o060 ([ I N J
e0e | T 09890 -] oo
000 ‘[ controller o6 o
e XX
old-class ®®° - old-class ®®° eee
00 0o S
exemplars o ¢ @ exemplars o ¢ @
Benefits:

+ Data is more balanced
+ Overcome the forgetting problem
by allocating more memory for exemplars
[1] Rebuffi, Sylvestre-Alvise, et al. "icarl: Incremental classifier and representation learning." CVPR 2017,

[2] Hou, Saihui, et al. "Learning a unified classifier incrementally via rebalancing." CVPR 2019; 13
[3] Wu, Yue, et al. “Large scale incremental learning.” CVPR 2019.
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Class-Incremental Learning (CIL)

How to allocate the memory between new-class data and old-class exemplars?

Challenge 1: due to the CIL protocol, we’re not allowed to use the historical and future data

Challenge 2: the memory allocation is a non-differentiable operation

14



Class-Incremental Learning (CIL)
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How to allocate the memory between new-class data and old-class exemplars?

Challenge 1: due to the CIL protocol, we’re not allowed to use the historical and future data

Our solution: generate the pseudo CIL tasks, and train the controller on them

Challenge 2: the memory allocation is a non-differentiable operation

Our solution: use the REINFORCE algorithm!*l to update the controller

[4] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine learning, 8(3-4):229-256, 1992.

15
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Class-Incremental Learning (CIL)

How to allocate the memory between new-class data and old-class exemplars?

Challenge 1: due to the CIL protocol, we’re not allowed to use the historical and future data

Our solution: generate the pseudo CIL tasks, and train the controller on them

Pseudo CIL tasks
The data of the initial phase l—1me1 [—]Em1+2| |
§ ? [Exemplar 11 (Exemplar 1221 |
sma=_mamcs e
Sl WES b N el — ﬁ‘“"”"
—— — 1 | Exemolari |- ’Ex_e_ﬁsm!ar_}i%__’_____l
.‘m-..& Exemplar 1 . Exemplar 1+2 .
G E S NEES | Create ! [P ] el rain
> (U[] ] [ iz | | > | controller
OR g ' 0000000 ’
— i ........ :_ 90000000 :
Another dataset (1]
L Tt B et . ; ] % Classifier Classifier Classifier
S — ; 1 “— < }l I @ ;X I _& 5’3
=1l -
= U[
] SNES eese 3332 16
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Class-Incremental Learning (CIL)

How to allocate the memory between new-class data and old-class exemplars?

Challenge 2: the memory allocation is a non-differentiable operation

Our solution: use the REINFORCE algorithm!*l to update the controller

Observe s ) ——
) - | Pseudo Cumulative !
Take Actions a,a;" ' | CILTask (| Reward |xZ !
12 i Ti R} :
o - '
. ® m ' . :
. c > Cumulative : : -
> & = [~ Reward > | :
f.g oS R S . | Pseudo Cumulative :
3 Observe s; = 3 3 | [ ClLTask — Rew%rd xZ !
cD } 1
Take Actions d.'! a! B 3 | Tk Rz |
> - 1 ° 1
. - . J ________________ :
) Update
P oo S0, )
17

[4] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine learning, 8(3-4):229-256, 1992.



]V? SMU School of .
| erowwmense | COMputing and
Information Systems

Class-Incremental Learning (CIL)

HOW to allocate the memory between new-class data and old-class exemplars?

|H1gh11ghted| our method works especially well in more serious forgetting settings.

CIFAR-100 ImageNet-Subset ImageNet-Full
Method
N=5 10 25 5 10 25 5 10 25

LwF [24] 56.79 53.05 50.44 58.83 53.60 50.16 52.00 47.87 4749
iCaRL [34] 60.48 56.04 52.07 67.33 6242 57.04 50.57 48.27 4944
LUCIR [18] 63.34 62.47 59.69 71.21 68.21 64.15 65.16 62.34 57.37
Mnemonics [26] 64.59 62.59 61.02 72.60 71.66 70.52 65.40 64.02 62.05
PODNet [13] 64.60 63.13 61.96 7645 74.66 70.15 66.80 64.89 60.28
LUCIR-AANets [25] 66.88 65.53 63.92 72.80 69.71 68.07 65.31 6299 61.21

w/ RMM (ours) 68.42 67.17 64.56 73.58 72.83 72.30 65.81 64.10 62.23
POD-AANets [25] 66.61 64.61 }62.63 | 7736 75.83 7218 | 67.97 65.03 | 62.03 |

w/ RMM (ours) 68.86 67.61 | 66.21 | 79.52 78.47 1 76.54 | 69.21 67.45 | 63.93 |

10
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Class-Incremental Learning (CIL)

How to solve the conflict between distillation and cross-entropy in CIL?

Existing methods and problems Our idea

Computing distillation loss on new datal'-?] Selecting the unlabelled data and
Computing distillation loss on these data

new model outputs old model outputs labels
descent
£ =Lcg([0.1,0,0.6,02],[ 0,C0, 1, 0)) Benefits:
+ALxp([0.5 D;ﬂ, [, [0.2 D;Sl 1) + No depreciation for new class performance
ascent + No additional supervision required

(a) The CIL loss for a new class_training sample
ascent
£ =Lcp((0.1,02,0.1,0.1],[ 0,CT, 0, 0])
ALxp([0.4 EE%EL (=, ], 10.3 EE; 71 =3, <)
FALxo((0:4, 065 11 ascent
(b) The CIL loss for an old class_training sample

+ Easy to train

[1] Rebuffi, Sylvestre-Alvise, et al. "icarl: Incremental classifier and representation learning." CVPR 2017,

[2] Li, Zhizhong, and Derek Hoiem. "Learning without forgetting." TPAMI 2017; 19
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Class-Incremental Learning (CIL)

How to solve the conflict between distillation and cross-entropy in CIL?

.{ new data
|
1
1

taroet YYYYYYY) i
dge 00000000 '
ata I 00000000 |
stream ' 00000000
i old exemplars |
mem ! 00000000
ory ' e00@0000
i S
| prototypes |

! (Y'Y X ! placebo

free i unlabeled data I/ | placebos P batch P

, | 00000000 | _eeeee sample eeee

mage i eeeeccee ! | eeccee “eo00

stream = ‘o---ooo oo
evaluation functions
{Sm(u)} iy
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Class-Incremental Learning (CIL)

How to solve the conflict between distillation and cross-entropy in CIL?

.{ new data E new class
taroet | eeeeceee ! batch d
ge ' 00000000 | sample Yy
data I 00000000 | g
stream : : eoee
! eoeeccee ! old class
' old exemplars | batch e
mem ! 00000000 sample L
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(T 777 l— ______ 1
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: (XY X ! placebo
free ' unlabeled data ¢/ | placebos P batch P
: | 00000000 | _eeeee sample eoee
1mage I 00000000 ! 4+ " eeoeeo XYY
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evaluation functions
{Sm(u)}mh
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Class-Incremental Learning (CIL)

How to solve the conflict between distillation and cross-entropy in CIL?

______________ data for CE loss
[ new data E (" new class
target | eeeeceee ! | batchd
' 00000000 | sample . eoeee® |
tclata " 00000000 T eeee |
stream i eecccocco old class new gn?del CE loss
' old exemplars | ' batche '
memory ! 00000000 | sample !: Kl
' e000@0000 1 ee
_____________ 4 === . g
[ l— ______ 1 : i
i prototypes E E !
i (XYY’ i i placebo | old model
free  unlabeled data U/ placebos P  batch P | 0., KD loss
: | 00000000 | _eeeee sample  eeee ‘
1mage i 0000000 ! } " eceee | eee0e0 |
stream data for KD loss

evaluation functions
{S m (u) }707;_:11

I
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Class-Incremental Learning (CIL)

How to solve the conflict between distillation and cross-entropy in CIL?

Visualization results: related cues are found in the unlabelled images

Road

e _e

2 '

9 new data

= | 1“ old data
n03207941 - dishwasher 103452741 - grand piano 104515003 - upright B placebos

(a) Selected placebos and GradCAM visualization (b) t-SNE visualization

23
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Class-Incremental Learning (CIL)

HOW to solve the conflict between distillation and cross-entropy in CIL?

20 exemplars/class

10 exemplars/class

5 exemplars/class

Method Average Last Average Last Average Last
LwF 53.19 43.18 45.96 34.10 35.41 24.91

w/ ours 59.29 +6.10  49.64 +6.46 5348 +752  38.03 +3.93 41.67 +6.26 28.60 +3.69
1CaRL 57.12 47.49 53.43 41.49 4373 34.33

w/ ours 61.17 +405  50.96 +3.47 59.32 +589  46.48 +4.99 51.19 +7.46 39.29 +4.96
LUCIR 63.17 53.71 60.50 49.08 | 5136 3937 71

w/ ours 65.48 +231  56.77 +3.06 64.93 1389  55.54 +646 1 63.01 +11.65  53.09 +1372 1
LUCIR+AANets 66.72 57.77 65.46 55.17 60.28 48.23

w/ ours 67.33 061 59.32 +155 65.51 +005 55.42 +025 64.10 +3.82 53.41 +5.18
POD+AANets 66.12 55.27 61.12 48.83 53.81 42.93

w/ ours 67.47 +135 58.91 +3.64 64.56 +3.44  52.60 +3.77 60.35 +6.54 48.53 +5.60

24
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Class-Incremental Learning and related... B. Schiele

T.-S. Chua
Related works in our team

Z. Luo, Y. Liu, B. Schiele, Q. Sun. Class-Incremental Exemplar Compression for Class-Incremental Learning.
CVPR 2023.

Y. Liu, Y. Li, B. Schiele, Q. Sun. Online Hyperparameter Optimization for Class-Incremental Learning.
AAAI 2023. Oral.

Q. Sun* Y. Liu*, Z. Chen, T.-S. Chua, B. Schiele. Meta-Transfer Learning through Hard Tasks.

T-PAMI 2022.

Y. Liu, B. Schiele, Q. Sun. RMM: Reinforced Memory Management for Class-Incremental Learning.
NeurlPS 2021.

Y. Liu, B. Schiele, Q. Sun. Adaptive Aggregation Networks for Class-Incremental Learning.

CVPR 2021.

Y. Liu, Y. Su, A.-A. Liu, B. Schiele, Q. Sun. Mnemonics training: Multi-class incremental learning without forgetting.
CVPR 2020. Oral.

Y. Liu, B. Schiele, Q. Sun. An Ensemble of Epoch-wise Empirical Bayes for Few-shot Learning.

ECCV 2020.

Q. Sun*, Y. Liu*, T.-S. Chua, B. Schiele. Meta-Transfer Learning for Few-Shot Learning.

CVPR 2019. 1000+ citations.

X, Li, Q. Sun, Y. Liu, T.-S. Chua, et al. Learning to Self-Train for Semi-Supervised Few-Shot Classification.
NeurlPS 2019.

25
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Label-limited image classification
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Label-limited semantic segmentation

i Class Activation Maps
| (CAM)
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1 1
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1 1
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i | é - Class Activation SelectlonE High-Confidence Exp ansmn? Pseudo : level

i | @ § Maps Seed Areas (Cues) Mask P abels:
1

i | | [mage 5 I | “only

i | I . image

i i level

: | e e e e e e e - - 4 I labels

. Fully Supervised .
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| |

L e e o o o o o o o s e 1
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Weakly-Supervised Semantic Segmentation (WSSS)

Why do we need weakly-supervised semantic segmentation techniques?

_ The cltyscapes lataser T V4
LBELE |

Semantic, mstance wi‘ se pixe }1 6t ﬁbnsbf 30 classes
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Label-limited semantic segmentation

i Class Activation Maps
| (CAM)
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Label-limited semantic segmentation

Causal Intervention for Weakly-Supervised Semantic Segmentation

Dong Zhang, Hanwang Zhang, Jinhui Tang, Xian-Sheng Hua, Qianru Sun
Neural Information Processing Systems, NeurlPS '20. (Oral Presentation, 1.1%)
[paper] [code]

Class Re-Activation Maps for Weakly-Supervised Semantic Segmentation
Zhaozheng Chen, Tan Wang, Xiongwei Wu, Xian-Sheng Hua, Hanwang Zhang, Qianru Sun

2022 |IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR '22.
[paper] [code]

Extracting Class Activation Maps from Non-Discriminative Features as well
Zhaozheng Chen, Qianru Sun

2023 Conference on Computer Vision and Pattern Recognition, CVPR '23.
[paper] [code]

Zhaozheng Chen
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Label-limited semantic segmentation

Causal Intervention for Weakly-Supervised Semantic Segmentation

Dong Zhang, Hanwang Zhang, Jinhui Tang, Xian-Sheng Hua, Qianru Sun
Neural Information Processing Systems, NeurlPS '20. (Oral Presentation, 1.1%)
[paper] [code]

Class Re-Activation Maps for Weakly-Supervised Semantic Segmentation
Zhaozheng Chen, Tan Wang, Xiongwei Wu, Xian-Sheng Hua, Hanwang Zhang, Qianru Sun

2022 |IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR '22.
[paper] [code]

Extracting Class Activation Maps from Non-Discriminative Features as well
Zhaozheng Chen, Qianru Sun

2023 Conference on Computer Vision and Pattern Recognition, CVPR '23.
[paper] [code]

Zhaozheng Chen
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Weakly-Supervised Semantic Segmentation (WSSS)

The problem we found in Step 1: binary cross-entropy (BCE) loss is inefficient

We found many confusing regions are between co-occurring objects

.' BCE

I results,

: i.e., vanilla
| CAM

Here are
better

ones.

Motorbike Person

32
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Weakly-Supervised Semantic Segmentation (WSSS)

The problem we found in Step 1: binary cross-entropy (BCE) loss is inefficient

Why?

We inspect the Sigmoid function in BCE: exp(x)/(1+exp(x))
where x denotes the prediction logit of any individual class e.g., person.

33
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Weakly-Supervised Semantic Segmentation (WSSS)

The problem we found in Step 1: binary cross-entropy (BCE) loss is inefficient

What about Softmax CE (SCE)?

34
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Weakly-Supervised Semantic Segmentation (WSSS)

The problem we found in Step 1: binary cross-entropy (BCE) loss is inefficient

Val Accuracy mloU of CAM

What about Softmax CE (SCE)? . HBCE
| SCE

?- 80-class models: BCE and SCE
' yield equal-quality classifiers
' but clearly different CAMs

0.95

\\80—das§l 5-hoofed . \\ 80-c|as;' 5-hoofed \\ 80-clas$'5-hoofed
\\—/(a) SN (b)\"/

Figure 1. We train two models respectively using binary cross en-

tropy (BCE) and softmax cross entropy (SCE) losses. Our train

and val sets contain only single-label images of MS COCO [ 7]

“80-class™ model uses the complete label set. “5-hoofed™ model

is trained on only the samples of 5 hoofed animals each causing

false positive flaws to another, e.g., between cow and horse. 35
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Weakly-Supervised Semantic Segmentation (WSSS)

The problem we found in Step 1: binary cross-entropy (BCE) loss is inefficient

Val Accuracy mloU of CAM
What about Softmax CE (SCE)? . BBCE 0y mmmmTTmm=o }
O SCE ' /,’fr;iESet ValASet\‘\\
» The CAMs of SCE models are of 09 - . 1

higher mloU.

! I

! I

! I

| | 0.9 , 05 \
T ] 0059l !
e This superiority is maintained in |, 08 \ 04 /

. . . \
' validation images. | ‘ /
e e e e o L T ) 0.8 03 R4
80-class 5-hoofed ~ 80-class 5-hoofed 80-class 5-hoofed ~

(@) T~ (b) -

—
-~ —

-

Figure 1. We train two models respectively using Bfn;lry Cross en-
tropy (BCE) and softmax cross entropy (SCE) losses. Our train
and val sets contain only single-label images of MS COCO [ 7]
“80-class™ model uses the complete label set. “5-hoofed™ model
is trained on only the samples of 5 hoofed animals each causing
false positive flaws to another, e.g., between cow and horse. 36
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Weakly-Supervised Semantic Segmentation (WSSS)

The problem we found in Step 1: binary cross-entropy (BCE) loss is inefficient
Justification: BCE vs. SCE

4 A

For the ease of analysis, we consider the binary-class (K = 2) situation with the positive
class p and negative class g:

—1 1
® z L ce —
2 4 2e®r Vgl 2 + 2e2a
—1 1
@ qu['sce — —
1+ e*r—%q /

37
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Weakly-Supervised Semantic Segmentation (WSSS)

The problem we found in Step 1: binary cross-entropy (BCE) loss is inefficient

Justification: BCE vs. SCE

For the ease of analysis, we consider the binary-class (K = 2) situation with the positive
class p and negative class g:

—1 1
@® z L ce — @ z C ce =
v P b 2 + Qezp v q b 2 + Qe—zq
-1 1
&) Vzpﬁsce — 1+ e2r—2a @ quﬁsce = 1 + e*r—2q

For confusing prediction logits, i.e., Zp = Zg4, there are two subcases: both are of
\small or large numbers. In these cases, either V2, Lyce or V. Lice is zero. /
38
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Weakly-Supervised Semantic Segmentation (WSSS)

The problem we found in Step 1: binary cross-entropy (BCE) loss is inefficient

Justification: BCE vs. SCE

For the ease of analysis, we consider the binary-class (K = 2) situation with the positive
class p and negative class g:

—1 1
@® z L ce — @ z C ce =
v P b 2 + Qezp v q b 2 + Qe—zq
-1 1
&) Vzpﬁsce — 1+ e2r—2a @ quﬁsce = 1 + e*r—2q

For confusing prediction logits, i.e., Zp = Z4. there are two subcases: both are of
\small or large numbers. In these cases, both V., L. and V., Lsce are non-zeros. /

39
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Weakly-Supervised Semantic Segmentation (WSSS)

The problem we found in Step 1: binary cross-entropy (BCE) loss is inefficient

Justification: BCE vs. SCE

For the ease of analysis, we consider the binary-class (K = 2) situation with the positive
class p and negative class g:

-1 1
@ z L ce — @ z L ce =
V p~b 9 n 2ezp V q~b 9 4 Q¢ %q
-1 1
&) Vzp['sce — 1+ e2r—2a @ quﬁsce = 1 + e*r—2q

\ Therefore, SCE is more active than BCE to yield gradients for optimization. /
40
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Weakly-Supervised Semantic Segmentation (WSSS)

The problem we found in Step 1: binary cross-entropy (BCE) loss is inefficient
Justification: BCE vs. SCE

Positive Class Gradient Confusion Class Gradient ‘

0.8 03 ) o i * The gradients of SCE |
¢ |
i e BCE ¢ SCE 'o\ Steep o BCE ¢ SCE | losschange more |
]\ Steep oz | S ' rapidly for both positive |
o ‘f\ “ote . ' and negative classes |
~ |

e 01 p Gentle® T ety ! '

02 |GENtlevs - ¢ % '+ The SCE model learns |
| |

| |

‘..“s ‘e

—> ‘“‘,“ { 2 ] o .
r"'"""""mn:‘a.:i‘:.‘:_, 0 TV vereeetyeesas > more actively

0 e ————————— o e e e e J

0 200 400 600 800 1000 O 200 400 600 800 1000
Training Iteration Training Iteration

Visualization of Gradient Changes in Training with BCE and SCE
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Weakly-Supervised Semantic Segmentation (WSSS)

The solution is introducing SCE in the process of CAM extraction!

Feature Maps f [1] Bus
g @ GAP 3 {:} pe.
) E = ———| FClayerl [—»[E|— 17"
Seed Generation [} ~ ] 2 L
= 5 WxHxC ;
= i Multi-hot label
f — [ FC Layer-l]—> CAM ._-35 i d cam ) Bt ';S*;‘;'
! © o il
} implemen> _ Bus Person Bicycle |
fk_’ FC Layer-2 |—» ReCAM % é - - g C‘pﬁ"é&ﬁé’n"d
33 ke —  "higde’
"t Y
33 fz I3
. _._3.. 5 GAP
Our method is called ReCAM = : — -
28 At SCE classifiers
https://github.com/zhaozhengChen/ReCAM B e
[WxHxC]x3
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Weakly-Supervised Semantic Segmentation (WSSS)

The solution is introducing SCE in the process of CAM extraction!

Seed Generation

FC Layer-1 |— CAM CAM ReCAM (ours)

Methods mIoU Time mIoU Time
(%) (ut) (%) (ut)

ResNet-50 [ 1] 48.8 1.0 54.8 1.9

IRN[1] 66.3 8.2 70.9 9.1
AdvCAM [ 7] 556 3163 56.6 317.2

AdvCAM +IRN 699 3233 705 324.2

VOC

fk_’ FC Layer-2 |—» ReCAM

Our method is called ReCAM
https.//github.com/zhaozhengChen/ReCAM
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Weakly-Supervised Semantic Segmentation (WSSS)

The solution is introducing SCE in the process of CAM extraction!

Seed Generation

FC Layer-1 |—™ CAM

®_I

fk_’ FC Layer-2 |—» ReCAM

CAM ReCAM (ours)

mlIoU Time mIoU Time

(5) (ut) (%) (ut)

ResNet-50[5'] 488 1.0 548 1.9
S IRN[] 663 82 709 Ol
> AdvCAM['] 556 3163 566 3172

AdvCAM +IRN 699 3233 705 324.2

Methods

Our method is called ReCAM
https.//github.com/zhaozhengChen/ReCAM
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Weakly-Supervised Semantic Segmentation (WSSS)

The solution is introducing SCE in the process of CAM extraction!

Seed Generation

Fc Layer' — CAM CAM ReCAM (ours)
Methods mIoU Time mIoU Time
(%) (ut) (%) (ut)
ResNet-50 [ 1] 48.8 1.0 1.9
8 IRN[1] 66.3 8.2 70.9 9.1
>

AdvCAM [ ] 55.6 3163 56.6 317.2

AdvCAM + IRN |69.9 323.3 | 70.5 3242

fk_’ FC Layer-2 |—» ReCAM

Our method is called ReCAM
https.//github.com/zhaozhengChen/ReCAM
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Weakly-Supervised Semantic Segmentation (WSSS)

The solution is introducing SCE in the process of CAM extraction!

Seed Generation

FC Layer-1 |— CAM CAM ReCAM (ours)

Methods mIoU Time mIoU Time
(%) (ut) (%) (ut)

ResNet-50 [ 1] 48.8 1.0 54.8 1.9

IRN[1] 66.3 8.2 70.9 9.1
AdvCAM [ 7] 55,6 3163 | 56.6 317.2

AdvCAM +IRN 699 3233 705 324.2

VOC

fk_’ FC Layer-2 |—» ReCAM

Our method is called ReCAM
https.//github.com/zhaozhengChen/ReCAM
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Weakly-Supervised Semantic Segmentation (WSSS)

Adaptive thresholding?

Problem not solved!

Transformer based? End to end optimizable?

Classification CAM Seed Expansion Pseudo-
Model Areas

Pseudo-Mask Generation Adaptive
Pseudo Ground-Truth thresholding?

Segmentation
Model

Training Images
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Extracting Class Activation Maps from Non-Discriminative Features as well

* Motivation: biased classifier

(a) Image (b) CAM (c) CAM of confusing classes (d) LpCcAM

f(x) *Wsheep f(x) *Weow f(x) * Whorse f(x) * Weat

bus f(x) - Whus f(x) *Werain

M SN SN S S SN S S S S B S B S S B e e .
W NN BN SN S SN SRS S SN SR S S RS SR S B e e .
= |
W N SN S R G B B B B B R R R . R R . .

g

f(x) *Wirain f(x) *Waeroplane f(x) *Wear f(x) *Wnotorbike

« Question: how to debias? 48
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Extracting Class Activation Maps from Non-Discriminative Features as well

» Solution: use unsupervised clustering to generate non-biased prototypes as classifiers

I

All training | Feature | Image |Dividing FG/BG Eq. (2) Clusters Selecting Prototypes |  Local | Generating : Classifier weights |
images [ extractor | features Clustering Eq.(3)and Eq. (4) | prototypes | LpcAm ! :

I I

P~ FG Clusters : :

= \ = Feature (& | |

3 se'eCted extractor |-+ : Eq. (1) w‘ :

S TN I Weighted sum I

d | |

I I

CAM is given for
comparison only.

Aggregation
-

Eq. (6)

F, F, F; B, B,
Local prototypes

selected

~
______

(a) Generating local prototypes (b) Generating LPCAM

« Question: why this works? 49
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Extracting Class Activation Maps from Non-Discriminative Features as well

Justification: from supervised biased classifier to unsupervised unbiased classifier (local prototypes)

f(x3)=[0, 0, 2]

X3

f(x1)=[3o! 5! 5] f(x2)=[5! 10! 5]
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Extracting Class Activation Maps from Non-Discriminative Features as well

» Justification: from supervised biased classifier to unsupervised unbiased classifier (local prototypes)

f(x3)=[0, 0,2] Classifier weights Before Normalization |
Wpira =[4, 1, 1] X1 X, X3

CAM Eq. (1)

X3

130 is so bigger, which is called “biased”

f(x1)=[30, 5! 5] f(x2)=[5a 10! 5]
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Extracting Class Activation Maps from Non-Discriminative Features as well

» Justification: from supervised biased classifier to unsupervised unbiased classifier (local prototypes)

f(x3)=[0, 0, 2]

X3

f(x1)=[30, 5, 3] f (x2)=[5, 10, 3]

N\ N\
\

/

\
Heaoll,. 530* Tail , - .;\%
Ve * g3p (11 10)
\N!— N .8 s

Normalization in each cluster? 52
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Extracting Class Activation Maps from Non-Discriminative Features as well

» Justification: from supervised biased classifier to unsupervised unbiased classifier (local prototypes)

f(x3)=[0, 0, 2]

X3

7]
(]
Q.
>
©
°
Q.
f(x1)=[30\, 5! 5] f(x2)=[5a 1Q! 5] C_g
\ N o
\ \ ]
\
Head, - 530* Tail , - ';\s
[, @ ®
Jig X 30 (% 10,
\ ~ ! - N ‘8 ”’

Normalization in each cluster?

X1 X, X3
head 1.0 0.1 0.0
tail 0.2 0.9 0.1
sky 0.0 0.0 0.9
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Extracting Class Activation Maps from Non-Discriminative Features as well

» Justification: from supervised biased classifier to unsupervised unbiased classifier (local prototypes)

f(x3)=[0, 0, 2]

X3

7]
(]
Q.
>
©
°
Q.
f(x1)=[30\, 5! 5] f(x2)=[5a 1Q! 5] C_g
\ N o
\ \ ]
\
Head, - 530* Tail , - ';\s
[, @ ®
Jig X 30 (% 10,
\ ~ ! - N ‘8 ”’

Normalization in each cluster?

X1 X, X3
head 1.0 0.1 0.0
tail 0.2 0.9 0.1
sky 0.0 0.0 0.9
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Extracting Class Activation Maps from Non-Discriminative Features as well

» Justification: from supervised biased classifier to unsupervised unbiased classifier (local prototypes)

f(x3)=[0, 0,2] Classifier weights Before Normalization |
Wpira =[4, 1, 1] X1 X, X3

X3

CAM Eq. (1)
(7))
é’ X1 X2 X3
Y= head 1.0 0.1 0.0
g_ tail 0.2 0.9 0.1
f(x1)=[30, 5! 5] f(x2)=[55 10! 5] © Sky 0.0 0.0 0.9
A A 5 eoam | 000 00 [ 00
\ \ —l
\\
Head, - 530* Tail , - ;\s .
[, @ O ;
e *.30 (% 10,
~9_ Mo . ., -
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Extracting Class Activation Maps from Non-Discriminative Features as well

» Justification: from supervised biased classifier to unsupervised unbiased classifier (local prototypes)

f(x3)=[0, 0,2] Classifier weights Before Normalization |
Wpira =[4, 1, 1] X1 X, X3

CAM Eq. (1)

X3

”
é’ X1 X2 X3
e head 1.0 0.1 0.0
g_ tail 02 | 09 0.1
f(x1)=[30, 5! 5] f(x2)=[55 10! 5] © Sky 0.0 0.0 0.9

AN N o

N \ 1

\\
Heaoll,. 630‘ Tal|/.¢ ;\%\\ After Normalization
33, % ( X1 X2 X3
\ 3 10
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Extracting Class Activation Maps from Non-Discriminative Features as well

» Justification: from supervised biased classifier to unsupervised unbiased classifier (local prototypes)

f(x3)=[0, 0,2] Classifier weights Before Normalization |
Wpira =[4, 1, 1] X1 X, X3

CAM Eq. (1)

X3

”
é’ X1 X2 X3
e head 1.0 0.1 0.0
g_ tail 02 | 09 0.1
f(x1)=[30, 5! 5] f(x2)=[55 10! 5] © Sky 0.0 0.0 0.9
N N o
N \ 1
\\—- — = \\
Heaoll,; 630;\ Ta|I, - ® ;\~ N After Normalization
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N~ ! - N ~ ‘8 .’ 7’
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Extracting Class Activation Maps from Non-Discriminative Features as well

* Results: LPCAM can be usias improved version of CAM

Seed Mask Pseudo Mask

Methods e
CAM| LPCAM | CAM LPCAM
IRN [1] 48.8 | 54.9+61 | 66.5 71.2+47 .
Q  EDAM [38] 52.8| 54.9121| 68.1 69.6+15 | 1he WSSS pipeline:
>  MCTformer [44] 61.7] 63.5+1.8 | 69.1 70.8+1.7
AMN [25] 62.1| 65.3+32| 72.2 72.9+0.7 S ntatae CAM Seed [|EXpansion |p . 40
I Model Areas PMas(llis
8 IRN [1] 33.1| 35.4+23 | 42.5 46.6+4.1 Class .
S AMN [25] 403 | 42.5122 | 467 477410 Labels "“““'M“;‘sﬁf;:”;:.:::::,d_m'
[ Images |- === === oo " Nodal
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Extracting Class Activation Maps from Non-Discriminative Features as well

* Results: LPCAM can be used as improvedtrsion of CAM

Seed Mask Pseudo Mask

Methods -
CAM LPCAM CAM| LPCAM
IRN [1] 48.8 549+61 66.5| 71.2+47 .
Q  EDAM [38] 528 549121 68.1| 69.6+15| | The WSSS pipeline:
> MCTformer [44] 61.7 63.5+1.8 69.1| 70.8+1.7
AMN [25] 62.1 65.3+32 72.2| 72.9+0.7 S ntatae CAM Seed [|EXpansion |p . 40
I Model Areas PMas(llis
8 IRN [1] 33.1 35.4+23 42.5| 46.6+4.1 Class .
S AMN [25] 403 42.5:22 46.7| 477410 Labels "“““'M“;‘sﬁf;:”;:.:::::,d_m'
[ Images |- === === oo " Nodal
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Extracting Class Activation Maps from Non-Discriminative Features as well

* Motivation: biased classifier
Teddy Bear Dog Surfboard Train (failure)

.5
o
o - -
AMN g
.
-

AMN+
LPCAM
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Extracting Class Activation Maps from Non-Discriminative Features as well

« Large models released, e.g., SAM (Segment Anything Model)

* represents a rough location
of any object or any stuff
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Extracting Class Activation Maps from Non-Discriminative Features as well

« Large models released, e.g., SAM (Segment Anything Model)

. VOC: 86.45%!!

Horse” bbox 62

A simple testing by
using an object
detector:

Original image




Extracting Class Activation Maps from Non-Discriminative Features as well

School of
- | Computing and
Information Systems

Large models released, e.g., SAM (Segment Anything Model)

. VOC186.45%!

A simple testing by
using an object
detector:

Original image

“Person” bbox

“Horse” ox

Methods Seed Mask
CAM LPCAM
IRN [1] 48.8 54.9+6.1
EDAM [38] 52.8 54.9+21
MCTformer [44] 61.7 63.5+1.8
AMN [25] 62.1
8 IRN [1] 33.1 35.4+23
8 AMN [25] 40.3 42.5+22
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Large models released, e.g., SAM (Segment Anything Model)

A simple testing by
using an object
detector:

Original image

| @ Souveni

“Horse” box

.

Actually,
VOC:

Methods Seed Mask
CAM LPCAM
IRN [1] 48.8 54.9+6.1
EDAM [38] 52.8 54.9+21
MCTformer [44] 61.7 63.5+1.8
AMN [25] 62.1
IRN [1] 33.1 35.4+23
AMN [25] 40.3 42.5+22
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Weakly-Supervised Semantic Segmentation (WSSS)

Adaptive thresholding?

Problem not solved!

Transformer based? End to end optimizable?

Classification CAM Seed Expansion Pseudo-
Model Areas

Pseudo-Mask Generation Adaptive
Pseudo Ground-Truth thresholding?

Segmentation
Model

Training Images
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Weakly-Supervised Semantic Segmentation (WSSS)

Problem solved?

Adaptive thresholding?

Transformer based? End to end optimizable?

Classification CAM Seed Expansion Pseudo-
Model Areas

Pseudo-Mask Generation Adaptive
Pseudo Ground-Truth thresholding?

Segmentation
Model

Training Images
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Weakly-Supervised Semantic Segmentation (WSSS)

Problem solve

d!
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